(ˆHψ)(y)=12π∫eik(y−x)T(k)ψ(x)dxdk+V(y)ψ(y)=12π∫eik(y−x)H(k,x)ψ(x)dxdk
Now consider the Schrodinger equation
∂ψ∂t=iˆHψ.
∂ψ∂t=iˆHψ.
We would like to obtain a formula for the solution operator Ut=e−iˆHt. Let us consider its Schwartz kernel ⟨y|Ut|x⟩. Let N be a large integer so that Δt=t/N is "small". Then we can write
Ut=UNΔt,
Now consider a single term:
⟨y|UΔt|x⟩≃⟨y|1−iΔtˆH|x⟩=δ(y−x)−iΔt⟨x|ˆH|y⟩=12π∫eik(y−x)(1−iΔtH(k,x))dk≃12π∫eik(y−x)−iΔtH(k,x)dk
Now we have (taking x0=x and xN=y)
⟨y|Ut|x⟩=∫dx1⋯dxN−1 ×⟨xN|UΔt|xN−1⟩⋯⟨x1|UΔt|x0⟩=1(2π)N∫dx1⋯dxN−1dk0⋯dkN−1 × eikN(xN−xN−1)−iΔtH(kN−1,xN−1)⋯e−ikN(x1−x0)−iΔtH(k0,x0)=1(2π)N∫dx1⋯dxN−1dk0⋯dkN−1 × expN−1∑j=0ikj(xj+1−xj)−iΔtH(kj,xj)
Note this kind of integral seems like it should have a natural interpretation in symplectic or contact geometry, since the expression dxdk/(2π)N is very nealy the Liouville measure. This is the most general form of the path integral.
Now assume that H(k,x)=k2/2m+V(x). Then the k-dependent terms have the form
∫eik(y−x)−iΔtk2/2m.
Complete the square
ik(y−x)−iΔtk2/2m=−iΔt2m(k2−2mΔtk(y−x))=−iΔt2m(k2−2mΔtk(y−x)+m2Δt2(y−x)2−m2Δt2(y−x)2)=−iΔt2m(k−mΔt(y−x))2+im2Δt(y−x)2
Now, using that
∫e−ak2=√πa
We have
∫e−iΔt2m(k−mΔt(y−x))2=√2πmiΔt
Putting it altogether, we get the more familiar version of the path integral,
⟨y|Ut|x⟩≃CN∫dx1⋯dxN−1 × expiN−1∑j=0m2Δt(xj+1−xj)2−V(xj)Δt
where
C=12π√2πmiΔt=√m2πiΔt
Now we have (taking x0=x and xN=y)
⟨y|Ut|x⟩=∫dx1⋯dxN−1 ×⟨xN|UΔt|xN−1⟩⋯⟨x1|UΔt|x0⟩=1(2π)N∫dx1⋯dxN−1dk0⋯dkN−1 × eikN(xN−xN−1)−iΔtH(kN−1,xN−1)⋯e−ikN(x1−x0)−iΔtH(k0,x0)=1(2π)N∫dx1⋯dxN−1dk0⋯dkN−1 × expN−1∑j=0ikj(xj+1−xj)−iΔtH(kj,xj)
Note this kind of integral seems like it should have a natural interpretation in symplectic or contact geometry, since the expression dxdk/(2π)N is very nealy the Liouville measure. This is the most general form of the path integral.
Now assume that H(k,x)=k2/2m+V(x). Then the k-dependent terms have the form
∫eik(y−x)−iΔtk2/2m.
Complete the square
ik(y−x)−iΔtk2/2m=−iΔt2m(k2−2mΔtk(y−x))=−iΔt2m(k2−2mΔtk(y−x)+m2Δt2(y−x)2−m2Δt2(y−x)2)=−iΔt2m(k−mΔt(y−x))2+im2Δt(y−x)2
Now, using that
∫e−ak2=√πa
We have
∫e−iΔt2m(k−mΔt(y−x))2=√2πmiΔt
Putting it altogether, we get the more familiar version of the path integral,
⟨y|Ut|x⟩≃CN∫dx1⋯dxN−1 × expiN−1∑j=0m2Δt(xj+1−xj)2−V(xj)Δt
where
C=12π√2πmiΔt=√m2πiΔt
No comments:
Post a Comment