Let \(A\) be the algebra of polynomial functions on \(T^\ast \mathbb{C}^n\). This algebra has a natural Poisson bracket, given by
\[ \{p_i, x_j\} = \delta_{ij}. \]
We would like to define a new associative product \(\ast\) on \(A((\hbar))\) satisfying:
- \(f \ast g = fg + O(\hbar) \)
- \(f \ast g - g \ast f = \hbar \{f, g\} + O(\hbar^2)\)
- \(1 \ast f = f \ast 1 = f\)
- \((f \ast g)^\ast = -g^\ast \ast f^\ast\)
In the last line, the map \((\cdot)^\ast\) takes \(x_i \mapsto x_i\) and \(p_i \mapsto -p_i\). To figure out what this new product should be, let's take \(f,g \in A\) and expand \(f \ast g\) in power series:
\[ f \ast g = \sum_{n=0}^\infty c_n(f,g) \hbar^n \]
Now, equations (1) and (2) will be satisfied by taking \(c_0(f,g) = fg\) and \(c_1(f,g) = \{f,g\}/2\). Let \(\sigma\) be the Poisson bivector defining the Poisson bracket. This defines a differential operator \(\Pi\) on \(A \otimes A\) by
\[ \Pi = \sigma^{ij} (\partial_i \otimes \partial_j) \]
Let \(B = \sum_{n=0}^\infty B_n \hbar^n\) and write the product as
\[ f \ast g = m \circ B(f \otimes g). \]
Now, condition (2) tells us that \(B(0) = 1\) and that
\[ \left. \frac{dB}{d\hbar} \right|_{\hbar=0} = \frac{\Pi}{2} \]
So
\[ B = 1 + \frac{\hbar \Pi}{2} + O(\hbar^2) \]
It is natural to guess that \(B\) should be built out of powers of \(\Pi\), and a natural guess is
\[ B = \exp(\frac{\hbar \Pi}{2}), \]
which certainly reproduces the first two terms of our expansion. Let's see that this choice actually works, i.e. defines an associative \(\ast\)-product. Let \(m: A \otimes A \to A\) be the multiplication, and
\(m_{12}, m_{23}: A \otimes A \otimes A \to A \otimes A\), \(m_{123}: A \otimes A \otimes A \to A\) the induced multiplication maps. Then
\begin{align}
f \ast (g \ast h) &= m \circ(B( f \otimes m \circ B(g \otimes h) ) ) \\\
&= m \circ B( m_{23} \circ (1 \otimes B)(f \otimes g \otimes h) ) \\\
&= m_{123} (B \otimes 1)(1 \otimes B)(f \otimes g \otimes h)
\end{align}
On the other hand, we have
\begin{align}
(f \ast g) \ast h) &= m \circ(B( m \circ B(f \otimes g) \otimes h) ) ) \\\
&= m \circ B( m_{12} \circ (B \otimes 1)(f \otimes g \otimes h) ) \\\
&= m_{123} (1 \otimes B)(B \otimes 1)(f \otimes g \otimes h)
\end{align}
Hence, associativity is the condition
\[ m_{123} \circ [1\otimes B, B \otimes 1] = 0. \]
On \(A \otimes A \otimes A\), write \(\partial_i^1\) for the partial derivative acting on the first factor, \(\partial_i^2\) on the second, etc. Then
\[ 1 \otimes B = \sum_n \frac {\hbar^n}{2^n n!}
\Pi^{i_1 j_1} \cdots \Pi^{i_n j_n} \partial^2_{i_1} \partial^3_{j_1} \cdots
\partial^2_{i_n} \partial^3_{j_n} \]
and similarly for \(B \otimes 1\). So we have
\begin{align}
m_{123} (B\otimes 1)(1 \otimes B) &= \sum_n \sum_{k=0}^n \frac {\hbar^n}{2^n k! (n-k)!}
\Pi^{k_1 l_1} \cdots \Pi^{k_k l_k} \partial_{k_1} \partial_{l_1} \cdots
\partial_{k_k} \partial_{l_k} \\\
& \ \times \Pi^{i_1 j_1} \cdots \Pi^{i_{n-k} j_{n-k}} \partial_{i_1} \partial_{j_1} \cdots
\partial_{i_{n-k}} \partial_{j_{n-k}} \\\
&= m_{123}(1 \otimes B)(B \otimes 1)
\end{align}
Hence we obtain an associative \(\ast\)-product. This is called Moyal product.
Sheafifying the Construction
Now suppose that \(U\) is a (Zariski) open subset of \(X = T^\ast \mathbb{C}^n\). Then the star product induces a well-defined map
\[ \ast: O_X(U)((\hbar)) \otimes_\mathbb{C} O_X(U)((\hbar)) \to O_X(U)((\hbar)) \]
In this way we obtain a sheaf \(\mathcal{D}\) of \(O_X\) modules with a non-commutative \(\ast\)-product defined as above.
Define a \(\mathbb{C}^\ast\) action on \(T^\ast \mathbb{C}^n\) by acting on \(x_i\) and \(p_i\) with weight 1. Extend this to an action on \(\mathcal{D}\) by acting on \(hbar\) with weight -1.
Proposition: The algebra \(C^\ast\)-invariant global sections of \(\mathcal{D}\) is naturally identified with the algebra of differential operators on \(\mathbb{C}^n\).
Proof: The \(\mathbb{C}^\ast\)-invariant global sections are generated by \(\hbar^{-1} x_i\) and \(\hbar^{-1} p_i\). So define a map \(\Gamma(\mathcal{D})^{\mathbb{C}^\ast} \to \mathbb{D}\) by
\[ \hbar^{-1} x_i \mapsto x_i \]
\[ \hbar^{-1} p_i \mapsto \partial_i \]
From the definition of the star product, it is clear that this is an algebra map, and that it is both injective and surjective.
No comments:
Post a Comment